Stable manifolds associated to fixed points with linear part equal to identity
نویسندگان
چکیده
We consider maps defined on an open set of Rnþm having a fixed point whose linear part is the identity. We provide sufficient conditions for the existence of a stable manifold in terms of the nonlinear part of the map. These maps arise naturally in some problems of Celestial Mechanics. We apply the results to prove the existence of parabolic orbits of the spatial elliptic three-body problem. r 2003 Elsevier Inc. All rights reserved.
منابع مشابه
Invariant Manifolds of Dynamical Systems and an application to Space Exploration
In this paper we go over the basics of stable and unstable manifolds associated to the fixed points of a dynamical system. We will start with an overview of stable and unstable sets in general, and then look at some simple examples from linear systems, mostly taken from Proctor (2010). To study some non-linear examples we will use (without proof) the stable manifold theorem and will conclude wi...
متن کاملHomoclinic orbits in a piecewise system and their relation with invariant sets
Basic phenomena in chaos can be associated with homoclinic and heteroclinic orbits. In this paper, we present a general numerical method to demonstrate the existence of these orbits in piecewise-linear systems. We also show that the tangency of the stable and unstable manifolds, at the onset of the chaotic double-scroll attractor, changes the basin boundaries of twoα-limit sets. These changes a...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملExponentially small oscillation of 2-dimensional stable and unstable manifolds in 4-dimensional symplectic mappings
Homoclinic bifurcation of 4-dimensional symplectic mappings is asymptotically studied. We construct the 2-dimensional stable and unstable manifolds near the submanifolds which experience exponentially small splitting, and successfully obtain exponentially small oscillating terms in the 2-dimensional manifolds. ∗ E-mail address: [email protected] 1 typeset using PTPTEX.sty <ver...
متن کاملDifferential Topology and the Poincaré-hopf Theorem
In this paper we approach the topology of smooth manifolds using differential tools, as opposed to algebraic ones such as homology or the fundamental group. The main result is the Poincaré-Hopf index theorem, which states the sum of the indices of a vector field with finitely many zeros on a smooth compact oriented boundaryless manifold is equal to the Euler characteristic of the manifold. To l...
متن کامل